extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊S3)⋊1C22 = D12⋊24D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3):1C2^2 | 288,955 |
(C4×C3⋊S3)⋊2C22 = S32×D4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3):2C2^2 | 288,958 |
(C4×C3⋊S3)⋊3C22 = S3×D4⋊2S3 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3):3C2^2 | 288,959 |
(C4×C3⋊S3)⋊4C22 = D12⋊12D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3):4C2^2 | 288,961 |
(C4×C3⋊S3)⋊5C22 = D12⋊13D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3):5C2^2 | 288,962 |
(C4×C3⋊S3)⋊6C22 = S3×Q8⋊3S3 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3):6C2^2 | 288,966 |
(C4×C3⋊S3)⋊7C22 = D12⋊16D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3):7C2^2 | 288,968 |
(C4×C3⋊S3)⋊8C22 = C32⋊82+ 1+4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):8C2^2 | 288,1009 |
(C4×C3⋊S3)⋊9C22 = C62.154C23 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):9C2^2 | 288,1014 |
(C4×C3⋊S3)⋊10C22 = S3×C4○D12 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3):10C2^2 | 288,953 |
(C4×C3⋊S3)⋊11C22 = C2×D12⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):11C2^2 | 288,944 |
(C4×C3⋊S3)⋊12C22 = C2×D6⋊D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):12C2^2 | 288,952 |
(C4×C3⋊S3)⋊13C22 = D12⋊23D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3):13C2^2 | 288,954 |
(C4×C3⋊S3)⋊14C22 = C2×D4×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):14C2^2 | 288,1007 |
(C4×C3⋊S3)⋊15C22 = C2×C12.D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):15C2^2 | 288,1008 |
(C4×C3⋊S3)⋊16C22 = C2×C12.26D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):16C2^2 | 288,1011 |
(C4×C3⋊S3)⋊17C22 = C4○D4×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3):17C2^2 | 288,1013 |
(C4×C3⋊S3)⋊18C22 = C2×D6.D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):18C2^2 | 288,948 |
(C4×C3⋊S3)⋊19C22 = S32×C2×C4 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3):19C2^2 | 288,950 |
(C4×C3⋊S3)⋊20C22 = C2×C12.59D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3):20C2^2 | 288,1006 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×C3⋊S3).1C22 = C4.S3≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).1C2^2 | 288,375 |
(C4×C3⋊S3).2C22 = (C3×C12).D4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).2C2^2 | 288,376 |
(C4×C3⋊S3).3C22 = C3⋊S3.2D8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).3C2^2 | 288,377 |
(C4×C3⋊S3).4C22 = C3⋊S3.2Q16 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).4C2^2 | 288,378 |
(C4×C3⋊S3).5C22 = C3⋊S3.5D8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).5C2^2 | 288,430 |
(C4×C3⋊S3).6C22 = C32⋊6C4≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).6C2^2 | 288,431 |
(C4×C3⋊S3).7C22 = C3⋊S3.5Q16 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).7C2^2 | 288,432 |
(C4×C3⋊S3).8C22 = C32⋊7C4≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3).8C2^2 | 288,433 |
(C4×C3⋊S3).9C22 = C24⋊6D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).9C2^2 | 288,446 |
(C4×C3⋊S3).10C22 = D12.4D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).10C2^2 | 288,459 |
(C4×C3⋊S3).11C22 = D12⋊D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).11C2^2 | 288,574 |
(C4×C3⋊S3).12C22 = D12.D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).12C2^2 | 288,575 |
(C4×C3⋊S3).13C22 = Dic6⋊D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).13C2^2 | 288,578 |
(C4×C3⋊S3).14C22 = Dic6.D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).14C2^2 | 288,579 |
(C4×C3⋊S3).15C22 = D12.8D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).15C2^2 | 288,584 |
(C4×C3⋊S3).16C22 = D12⋊5D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).16C2^2 | 288,585 |
(C4×C3⋊S3).17C22 = D12.9D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).17C2^2 | 288,588 |
(C4×C3⋊S3).18C22 = D12.10D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3).18C2^2 | 288,589 |
(C4×C3⋊S3).19C22 = Dic6.9D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).19C2^2 | 288,592 |
(C4×C3⋊S3).20C22 = Dic6.10D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3).20C2^2 | 288,593 |
(C4×C3⋊S3).21C22 = D12.14D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3).21C2^2 | 288,598 |
(C4×C3⋊S3).22C22 = D12.15D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).22C2^2 | 288,599 |
(C4×C3⋊S3).23C22 = C24⋊8D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3).23C2^2 | 288,768 |
(C4×C3⋊S3).24C22 = C24⋊7D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3).24C2^2 | 288,771 |
(C4×C3⋊S3).25C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).25C2^2 | 288,772 |
(C4×C3⋊S3).26C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).26C2^2 | 288,775 |
(C4×C3⋊S3).27C22 = S32⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).27C2^2 | 288,868 |
(C4×C3⋊S3).28C22 = C4.4S3≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).28C2^2 | 288,869 |
(C4×C3⋊S3).29C22 = C32⋊C4⋊Q8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).29C2^2 | 288,870 |
(C4×C3⋊S3).30C22 = C32⋊D8⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).30C2^2 | 288,872 |
(C4×C3⋊S3).31C22 = C3⋊S3⋊D8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).31C2^2 | 288,873 |
(C4×C3⋊S3).32C22 = C32⋊Q16⋊C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).32C2^2 | 288,874 |
(C4×C3⋊S3).33C22 = C3⋊S3⋊2SD16 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).33C2^2 | 288,875 |
(C4×C3⋊S3).34C22 = C3⋊S3⋊Q16 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).34C2^2 | 288,876 |
(C4×C3⋊S3).35C22 = S32⋊D4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).35C2^2 | 288,878 |
(C4×C3⋊S3).36C22 = C4⋊S3≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).36C2^2 | 288,879 |
(C4×C3⋊S3).37C22 = C62.(C2×C4) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).37C2^2 | 288,935 |
(C4×C3⋊S3).38C22 = D4×C32⋊C4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).38C2^2 | 288,936 |
(C4×C3⋊S3).39C22 = C12⋊S3.C4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3).39C2^2 | 288,937 |
(C4×C3⋊S3).40C22 = Q8×C32⋊C4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).40C2^2 | 288,938 |
(C4×C3⋊S3).41C22 = D12.33D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).41C2^2 | 288,945 |
(C4×C3⋊S3).42C22 = Dic6.24D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).42C2^2 | 288,957 |
(C4×C3⋊S3).43C22 = Dic6⋊12D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 8+ | (C4xC3:S3).43C2^2 | 288,960 |
(C4×C3⋊S3).44C22 = D12.25D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).44C2^2 | 288,963 |
(C4×C3⋊S3).45C22 = Dic6.26D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8+ | (C4xC3:S3).45C2^2 | 288,964 |
(C4×C3⋊S3).46C22 = S32×Q8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).46C2^2 | 288,965 |
(C4×C3⋊S3).47C22 = D12⋊15D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8- | (C4xC3:S3).47C2^2 | 288,967 |
(C4×C3⋊S3).48C22 = C32⋊72- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).48C2^2 | 288,1012 |
(C4×C3⋊S3).49C22 = C32⋊92- 1+4 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).49C2^2 | 288,1015 |
(C4×C3⋊S3).50C22 = S32⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).50C2^2 | 288,374 |
(C4×C3⋊S3).51C22 = C32⋊C4≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).51C2^2 | 288,379 |
(C4×C3⋊S3).52C22 = C32⋊C4⋊C8 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).52C2^2 | 288,380 |
(C4×C3⋊S3).53C22 = C4.19S3≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).53C2^2 | 288,381 |
(C4×C3⋊S3).54C22 = C4.4PSU3(𝔽2) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8 | (C4xC3:S3).54C2^2 | 288,392 |
(C4×C3⋊S3).55C22 = C4.PSU3(𝔽2) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8 | (C4xC3:S3).55C2^2 | 288,393 |
(C4×C3⋊S3).56C22 = C4.2PSU3(𝔽2) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8 | (C4xC3:S3).56C2^2 | 288,394 |
(C4×C3⋊S3).57C22 = S3×C8⋊S3 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).57C2^2 | 288,438 |
(C4×C3⋊S3).58C22 = C24.64D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).58C2^2 | 288,452 |
(C4×C3⋊S3).59C22 = C3⋊C8.22D6 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).59C2^2 | 288,465 |
(C4×C3⋊S3).60C22 = C32⋊D8⋊5C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).60C2^2 | 288,871 |
(C4×C3⋊S3).61C22 = C4×S3≀C2 | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).61C2^2 | 288,877 |
(C4×C3⋊S3).62C22 = C4.3PSU3(𝔽2) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 48 | 8 | (C4xC3:S3).62C2^2 | 288,891 |
(C4×C3⋊S3).63C22 = C4×PSU3(𝔽2) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 36 | 8 | (C4xC3:S3).63C2^2 | 288,892 |
(C4×C3⋊S3).64C22 = C4⋊PSU3(𝔽2) | φ: C22/C1 → C22 ⊆ Out C4×C3⋊S3 | 36 | 8 | (C4xC3:S3).64C2^2 | 288,893 |
(C4×C3⋊S3).65C22 = C24⋊9D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).65C2^2 | 288,444 |
(C4×C3⋊S3).66C22 = C24⋊4D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).66C2^2 | 288,445 |
(C4×C3⋊S3).67C22 = C24.23D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).67C2^2 | 288,450 |
(C4×C3⋊S3).68C22 = D12.2D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).68C2^2 | 288,457 |
(C4×C3⋊S3).69C22 = D24⋊5S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).69C2^2 | 288,458 |
(C4×C3⋊S3).70C22 = D8×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3).70C2^2 | 288,767 |
(C4×C3⋊S3).71C22 = C24.26D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).71C2^2 | 288,769 |
(C4×C3⋊S3).72C22 = SD16×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3).72C2^2 | 288,770 |
(C4×C3⋊S3).73C22 = C24.40D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).73C2^2 | 288,773 |
(C4×C3⋊S3).74C22 = Q16×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).74C2^2 | 288,774 |
(C4×C3⋊S3).75C22 = C24.28D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).75C2^2 | 288,776 |
(C4×C3⋊S3).76C22 = C2×Dic3.D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).76C2^2 | 288,947 |
(C4×C3⋊S3).77C22 = C2×Q8×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).77C2^2 | 288,1010 |
(C4×C3⋊S3).78C22 = C8×C32⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).78C2^2 | 288,414 |
(C4×C3⋊S3).79C22 = (C3×C24)⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).79C2^2 | 288,415 |
(C4×C3⋊S3).80C22 = C8⋊(C32⋊C4) | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).80C2^2 | 288,416 |
(C4×C3⋊S3).81C22 = C3⋊S3.4D8 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).81C2^2 | 288,417 |
(C4×C3⋊S3).82C22 = (C3×C24).C4 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).82C2^2 | 288,418 |
(C4×C3⋊S3).83C22 = C8.(C32⋊C4) | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).83C2^2 | 288,419 |
(C4×C3⋊S3).84C22 = S32×C8 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).84C2^2 | 288,437 |
(C4×C3⋊S3).85C22 = C24⋊D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).85C2^2 | 288,439 |
(C4×C3⋊S3).86C22 = C24.63D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).86C2^2 | 288,451 |
(C4×C3⋊S3).87C22 = C24.D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | 4 | (C4xC3:S3).87C2^2 | 288,453 |
(C4×C3⋊S3).88C22 = C2×C12.29D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).88C2^2 | 288,464 |
(C4×C3⋊S3).89C22 = C3⋊C8⋊20D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).89C2^2 | 288,466 |
(C4×C3⋊S3).90C22 = C2×C12.31D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).90C2^2 | 288,468 |
(C4×C3⋊S3).91C22 = C2×C24⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).91C2^2 | 288,757 |
(C4×C3⋊S3).92C22 = C24.95D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).92C2^2 | 288,758 |
(C4×C3⋊S3).93C22 = M4(2)×C3⋊S3 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 72 | | (C4xC3:S3).93C2^2 | 288,763 |
(C4×C3⋊S3).94C22 = C24.47D6 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 144 | | (C4xC3:S3).94C2^2 | 288,764 |
(C4×C3⋊S3).95C22 = C2×C3⋊S3⋊3C8 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).95C2^2 | 288,929 |
(C4×C3⋊S3).96C22 = C2×C32⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).96C2^2 | 288,930 |
(C4×C3⋊S3).97C22 = C3⋊S3⋊M4(2) | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).97C2^2 | 288,931 |
(C4×C3⋊S3).98C22 = C2×C4×C32⋊C4 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).98C2^2 | 288,932 |
(C4×C3⋊S3).99C22 = C2×C4⋊(C32⋊C4) | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 48 | | (C4xC3:S3).99C2^2 | 288,933 |
(C4×C3⋊S3).100C22 = (C6×C12)⋊5C4 | φ: C22/C2 → C2 ⊆ Out C4×C3⋊S3 | 24 | 4 | (C4xC3:S3).100C2^2 | 288,934 |
(C4×C3⋊S3).101C22 = C2×C8×C3⋊S3 | φ: trivial image | 144 | | (C4xC3:S3).101C2^2 | 288,756 |